Sudoku sprendimo būdai
Geriausi būdai, patarimai ir gudrybės sprendžiant sudokus
Čia rasite keletą mūsų parengtų metodų, kurie, tikimės, padės jums geriau ir greičiau išspręsti Sudokus.
Pirmieji patarimai
Pirmiausia apžvelkime pagrindines žaidimo taisykles:
Šioje pirmoje pamokoje pateiksime keletą naudingų patarimų, kaip spręsti Sudokus.
- Naudokite pieštuką. Sudoku daug patogiau atlikti pieštuku nei kompiuterio ekrane. Be to, pieštuką galima paprastai ištrinti.
- Praktikuokite palaipsniui. Paprastai daugelyje laikraščių ir žurnalų sudoku neskirstomi pagal sudėtingumą, todėl pradedančiajam gali būti labai sunku užbaigti sudėtingą sudoku. PrintSudoku.com kataloguoja sudokus, kad galėtumėte praktikuotis su sudoku pagal savo lygį. Kuo aukštesnis lygis, tuo sunkiau (paprastai) bus sudėlioti skaičius, o labai sudėtinguose kartais teks išbandyti judesius.
- Nieko nėra geriau, nei rašyti kandidatų numerius viršutiniame kairiajame langelio kampe. Jei rašote mažais numeriais arba paraštėje, išbraukdami numerius juos perbraukite.
- Neskubėkite, Sudoku yra ramus žaidimas. Kai kuriuos sudokus galima išspręsti per kelias minutes, tačiau kitiems gali prireikti kelių valandų ar net dienų.
- Gerai suprojektuotas sudokus turi tik vieną sprendimą, todėl pasinaudokite šia savybe savo naudai.
- Niekada nebandykite, kol kruopščiai neišnagrinėjote visų galimų ėjimų.
- Vykdykite eiliškumą dėliodami skaičius; gera taktika - pradėti nuo dažniausiai pasitaikančių skaičių ir baigti rečiausiai pasitaikančiais skaičiais; lygiųjų atveju nuspręskite eiliškumą ir jo laikykitės visą žaidimą.
- Patikrinkite, ar kiekvienas jūsų žingsnis yra teisingas, nes nesėkmė pradžioje gali būti pražūtinga.
- Jei nerandate galimo sprendimo, paprašykite pagalbos arba pabandykite sudoku kitą kartą. Dažnai sprendimas atsiranda tada, kai mažiausiai tikitės, ir ne visada tada, kai esate priešais sudoku. .
Pagrindinis metodas
Lengviausia skaičių atrasti, kai eilutėje, stulpelyje ar kvadrante lieka tik vienas skaičius. Tokiu atveju trūkstamas skaičius patenka į vienintelį tuščią langelį.
Kaip matyti, pirmoje eilutėje yra visi skaičiai, išskyrus 7, todėl tik šis skaičius gali būti tuščiame langelyje. Pirmajame stulpelyje kažkas panašaus atsitinka su skaičiumi 5, taip pat šeštajame kvadrante su skaičiumi 1.
Eilučių ir stulpelių kirtimas
Kitas būdas rasti skaičius - kryžminės nuorodos pagal eilutes ir stulpelius. Tai reiškia, kad reikia sutelkti dėmesį į langelį ir patikrinti, kurie skaičiai gali būti toje vietoje, pašalinant skaičius, esančius toje pačioje eilutėje ar stulpelyje.
Toliau pateiktame paveikslėlyje matome, kad į nurodytą langelį gali patekti tik 7, nes skaičiai 1, 8, 3, 6 ir 9 yra tame pačiame stulpelyje, o skaičiai 2, 4 ir 5 - toje pačioje eilutėje.
Šį metodą galima patobulinti kontroliuojant ir tame pačiame kvadrante esančius skaičius. Toliau pateiktame pavyzdyje matome, kad naudojant eilutės ir stulpelio susikirtimą į pažymėtą laukelį patektų skaičiai 5, 7 ir 8. Kadangi skaičiai 5 ir 8 jau yra savo vietose kvadrante, galime jų atsisakyti, todėl nurodytą vietą užima skaičius 7.
Swordfish
"Mečetei" būdą Sudoku naudojame tada, kai tam tikras skaičius pasirodo lygiai trijose eilutėse ir trijuose stulpeliuose. Pavyzdžiui, jei skaičius 5 gali būti tik trijų skirtingų eilučių 2, 5 ir 8 stulpeliuose, sudaromas "Swordfish" modelis. Šiuo atveju, jei skaičius 5 negali būti jokiame kitame tų eilučių langelyje už 2, 5 ir 8 stulpelių ribų, tada 5 galima pašalinti kaip galimus tuose stulpeliuose iš kitų eilučių.
Šis metodas ypač naudingas norint atrakinti įstrigusias situacijas pažengusiame žaidime. Praktiniu atveju, jei pastebėjote, kad 1, 4 ir 7 eilutėse skaičius 5 gali būti tik tuose pačiuose trijuose stulpeliuose, nustatėte Žuvies kalaviją. Dabar galite saugiai pašalinti skaičių 5 iš 2, 5 ir 8 stulpelių visose kitose eilutėse, taip dažnai išvalysite kelis langelius ir lengviau išspręsite likusią sudoku dalį.
XYZ-Wing
"XYZ-Wing" pagrindinis tikslas - rasti tris langelius, kurie sudaro jungtį, iš kurių du turi du galimus skaičius, o trečiasis (apsisukimo taškas) turi bendrą skaičių su kiekvienu iš kitų dviejų langelių. Pavyzdžiui, tarkime, trys langeliai, kurių viename yra 1 ir 2, kitame - 1 ir 3, o ašis - 1, 2, 3. Tokia konfigūracija leidžia pašalinti skaičių 1 iš kitų langelių, kuriuos mato visi trys, nes skaičių 1 turi užimti vienas iš jų, taip pat patikslinant tų langelių parinktis.
Praktiškai, jei su tokia konfigūracija susidursite sudoku žaidime, atsiras galimybė gerokai sumažinti galimybes. Atkreipkite dėmesį, kaip langeliuose vyksta sąveika ir kaip bendro skaičiaus buvimas ašiniame langelyje apriboja to skaičiaus vietą susijusiuose langeliuose. Taikydami XYZ sparno metodą, galite strategiškai eliminuoti pasirinkimo galimybes ir taip lengviau išspręsti sudėtingesnes galvosūkio dalis.
Dviguba nuoroda (Dual linking)
Dvigubo susiejimo metodas taikomas tada, kai du skaičiai gali būti tik dviejuose eilutės, stulpelio ar bloko langeliuose, o šiuose langeliuose nėra jokių kitų skaičių. Išsprendus vieną iš skaičių, automatiškai išsprendžiama kito numerio padėtis. Šis metodas veiksmingai padeda panaikinti pasirinkimus tose srityse, kuriose skaičiai yra stipriai tarpusavyje susiję, padeda supaprastinti lentą ir priartėti prie Sudoku sprendimo.
Įsivaizduokite sudoku, kurio tam tikroje eilutėje tik A2 ir A8 langeliuose gali būti skaičiai 3 ir 7. Dar nežinome, kuriame iš šių langelių yra skaičiai 3 ir 7, bet žinome, kad jokiame kitame tos eilutės langelyje šių skaičių negali būti. Jei kitoje lentos vietoje išsprendžiame, kad A2 turi būti 3, automatiškai žinome, kad A8 turi būti 7. Šis tiesioginis ryšys tarp dviejų langelių leidžia mums judėti į priekį sprendžiant sudoku, pašalinant tas galimybes likusioje eilutėje.
Grandinės dėžė (Box line reduction)
Langelio linijos mažinimo metodas - tai pažangi Sudoku strategija, kuri taikoma, kai visos galimos skaičiaus vietos eilutėje arba stulpelyje yra tik vienoje srityje arba langelyje. Nustatę šią konfigūraciją, galite pašalinti tą skaičių iš galimų vietų kituose to paties langelio langeliuose, kurie nėra konkrečioje eilutėje ar stulpelyje. Taip yra todėl, kad kadangi skaičius turi būti to langelio eilutėje arba stulpelyje, jis negali būti kitoje to paties langelio vietoje.
Pavyzdžiui, jei sudoku viršutiniame langelyje skaičiai 4 gali būti tik langeliuose, kurie taip pat yra 2 eilutės dalis, tuomet galite atmesti 4 galimybę kituose to langelio langeliuose, kurie nėra 2 eilutės dalis. Šis veiksmas padeda susiaurinti pasirinkimo galimybes ir gali būti labai svarbus žaidimui į priekį, ypač tais atvejais, kai lenta yra labai perpildyta ir sprendimai nėra iš karto akivaizdūs. Naudojant šį metodą padidėja Sudoku sprendimo efektyvumas, nes išaiškėja galimybės ir lengviau nustatyti skaičius, kuriuos galima patalpinti kitoje lentos vietoje.
Jei žinote papildomų sudoku sprendimo būdų, kurių nepaminėjome, norėtume iš jūsų išgirsti. Jūsų žinios gali padėti kitiems sudoku gerbėjams pagerinti savo įgūdžius. Nedvejodami susisiekite su mumis ir pasidalykite savo strategijomis bei patarimais.